QUYOSH PECHINDA NIKEL FERRIT SINTEZI XUSUSIYATLARI

Mualliflar

  • Muhammad-Sultonxon Payzullaxonov Muallif
  • Raimxujaevich Muallif
  • Zafarovich Muallif

Kalit so‘zlar:

shpinel, eritma sintezi, ferritlar, kobalt, nikel, yonilg‘i xujayrasi, magnit histerezis, katalizator

Abstrak

Annotatsiya. Kirish. Sintez usuli ma’lum zarracha o‘lchami, tuzilishi, mikro tuzilishi va o‘ziga xos sirt maydoni va faza barqarorligiga ega bo‘lgan materialni olishda muhim rol o‘ynaydi. Ushbu parametrlar birgalikda ma'lum xususiyatlarni aniqlaydi. Asosiy sintez usullari: qattiq fazali reaksiyalar, termik parchalanish, gidrotermik va solvotermik usullar, birgalikda cho‘ktirish, sol-gel va mikroto‘lqinli ishlov berish. Biroq, har bir usul o‘zining afzalliklari va kamchiliklariga ega va shpineldan yuqori sifatli ferrit materiallarini olishning optimal usuli yo‘q. Shuning uchun quyosh pechida Fe2O3 + NiO aralashmasi eritmasidan sintez qilingan NiFe0O4 nikel ferritining tuzilishi va xususiyatlarini o‘rganish.Usullar va materiallar. Aralash agat ohakchasida etil spirti (10 og‘irlik) qo‘shilgan holda maydalangan va diametri 12 mm va balandligi 15 mm bo‘lgan tabletkalarga solingan. Tabletkalar quyosh pechining diametri 30 mm bo‘lgan doira shaklidagi markazlashtirilgan nuqtada joylashgan eritish stoliga qo‘yildi. Eritma suvga quyilishi bilan sovutilgan. Qattiqlashtirilgan quymalar 1100 °C da maydalangan, qoliplangan va sinterlangan.   Natijalar. 8,87 Å panjara parametri bilan nikel ferrit NiFe2O4 ning kubik modifikatsiyasini ifodalovchi bir fazali material olindi. Yangi sintez qilingan material Hc=60 Oe, Ms=30 emu/g parametrlari bilan yumshoq magnit xarakterga ega bo‘ldi. 1100 °C da pishirilgan material Hc = 80 Oe, Ms = 50 emu / g ko‘tarilgan parametrlarni ko‘rsatdi.

Xulosa. Quyosh pechida eritmadan sintez yo‘li bilan olingan material tuzilishi va magnit parametrlari tufayli organik xom ashyoni isloh qilish orqali vodorod sintezining katalitik jarayonlarida qo‘llanilishi mumkin.

Yuklashlar

Yuklab olish maʼlumotlari hali mavjud emas.

bibliografik havolalar

[1] Subramanian Yuvaraj, Ramakrishnan Kalai Selvan and Yun Sung Lee.An Overview of AB2O4- and A2BO4-Structured Negative Electrodes for Advanced Li-Ion Batteries// See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/291186670

[2] Alan Fernando Ney Boss, Antonio Carlos da Cunha Migliano Ingrid Wilke.Terahertz frequency electrical properties of nickel cobalt ferrites//Conference: 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz DOI: 10.1109/IRMMW-THz.2016.7758775)

[3] Atiq S., Majeed M., Ahmad A., Abbas S.K., Saleem M., Riaz S., Naseem S. Synthesis and investigation of structural, morphological, magnetic, dielectric and impedance spectroscopic characteristics of Ni-Zn ferrite nanoparticles. Ceram. Int. 2017. V.43. p.2486 –2494

[4] Balgude, S.D., Barkade, S.S. and Mardikar, S.P., 2020. Metal Oxides for High-Performance Hydrogen Generation by Water Splitting. In Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices, CRC Press, PP. 169-194.

[5] Pablo Korth Pereira Ferraz, Robert Schmidt, Delf Kober, Julia Kowal. 2018.A high frequency model for predicting the behavior of lithium-ion batteries connected to fast switching power electronics. Journal of Energy Storage,18: 40-49.

[6] Satish Meshram, Sagar Balgude, Imtiaz Mulla, Parag Adhyapak. 2015. Fabrication of WO3/PANI nanocomposites for ammonia gas sensing application. In 2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS), IEEE, pp. 196-199.

[7] Mallesh Kurakula, G. S. N. Koteswara Rao.2020. Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. European Polymer Journal, 136: 109919

[8] Durgadsimi, S., Kattimani, V., Maruti, N., Kulkarni, A., & Mathad, S. (2021). Синтез и структурный анализ феррита никеля, синтезированного методом со-осаждения. Eurasian Physical Technical Journal, 18(4(38), 14–19.

[9] Вызулин С.А., Каликинцева Д.А., Мирошниченко Е.Л., Бузько В.Ю., Горячко А.И.. Радиопоглощающие свойства никель-цинковых ферритов, синтезированных различными способами//Известия РАН. Серия физическая, 2018, том 82, No 8, с. 1045–1047

[10] Bouwmeester, H.J.M. and Burggraaf, A.J. (1997) Dense Ceramic Membranes for Oxygen Separator. In: Gellings, P.J. and Bouwmeester, H.J.M., Eds., The CRC Handbook of Solid State Electrochemistry, CRC Press, New York, 481-553.

[11] Mingchen Tang, Long Xu and Maohong Fan. Progress in oxygen carrier development of methane-based chemical-looping reforming: A review. Applied Energy, 2015, vol. 151, issue C, 143-156.

[12] Zeng Q., Zuo Y., Fan C., Chen C. CO2-tolerant oxygen separation membranes targeting CO2 capture application // J. Membr. Sci. – 2009. – V. 335. – P. 140-144.

[13] Gazda1a M., Jasinski P., Kusz B., Bochentyn B., Gdula-Kasica K., Lendze T. Lewandowska-Iwaniak W., Mielewczyk-Gryn A., Molin S. Perovskites in Solid Oxide Fuel Cells// Solid State Phenomena Vol. 183 (2012) pp 65-70

[14] Online available since 2011/Dec/22 at www.scientific.net © (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/SSP.183.65

[15] Felix N. Büchi, Mathias Reum Stefan A. Freunberger1 and Antonio Delfino On the Efficiency of Automotive H2/O2 PE Fuel Cell Systems//3rd European PEFC Forum, Session B09, Thursday, 7 July, 09:00h, File No. B091

[16] Qinghuan Pan, Liping Ma, Wang Du, Jie Yang, Ran Ao, Xia Yin, Sancheng Qi ng Hydrogen-enriched syngas production by lignite chemical looping gasification with composite oxygen carriers of phosphogypsum and steel slag//Energy. V.241, 2022

[17] Ismael M. Solar energy materials and solar cells ferrites as solar photocatalytic materials and their activities in solar energy conversion and environmental protection: A review, Sol. Energy Mater. Sol. Cells 219 (2021). https:// doi.org/10.1016/j.solmat.2020.110786.

[18] Miftahu Gambo Idris, Hafeez Yusuf Hafeez, Mohammed, Abdussalam Balarabe Suleiman, Chifu Ebenezer Ndikilar. A review on recent development in the spinel ferrites-based materials for efficient solar fuel (hydrogen) generation via photocatalytic water-splitting//Applied Surface Science Advances 18 (2023) 100468 https://doi.org/10.1016/j.apsadv.2023.100468

[19] Akbarov R.Y., Paizullakhanov M.S. Characteristic features of the energy modes of a Large Solar Furnace with a capacity of 1000 kW//Applied Solar Energy, 2018. V. 54.m P. 99-109

[20] Paizullakhanov M.S., Suvonova L.S. & Cherenda N.N. Synthesis of silicon carbide from natural raw material in a solar furnace//High Temperature Material Processes 28(1):19–25 (2024)

[21] Paizullakhanov, M.S., Shermatov, Zh.Z., Nodirmatov, E.Z., Rajamatov, O.T., Ernazarov, F.N., Sulaimanov, M.T.Nurmatov, Sh.,Cherenda, N.N. Synthesis of materials by the concentrated solar radiation.// High Temperature Material Processes 25(2):17–29 (2021)

[22] Payzullakhanov M.S., Payziyev S.D., Suleymanov S.K. Modeling of processes of heating and cooling of materials in a solar furnace//Applied Solar Energy, 2019. V.55.iss..5. P.404-408.

[23] Paizullakhanov, M.S., Karshieva, N.K., Ernazarov, F.N. et al. Studying the Possibility of Applying Barium-Strontium Cobaltite in Hydrogen Energy. Therm. Eng. 71, 280–284 (2024). https://doi.org/10.1134/S0040601524030054

[24] Шкловский Б.И., Эфрос А.Л. Современное состояние теории прыжковой электропроводности. УФН, 1983, т.141, вып.4, с.711-744

[25] Funke K. Jump relaxation model and coupling model-a comparison, J. Non-Cryst. Solids., 172 (1994) 1215-1221.

[26] Torres D., De Llobet S., Pinilla J.L., Lázaro M.J., Suelves I., Moliner R. Hydrogen production by catalytic decomposition of methane using a Fe-based catalyst in a fluidized bed reactor. J. Nat. Gas. Chem. 2012; 21:367–73.

[27]. Gudyma T.S, Lapekin N.I., Popov M.V., Bannov A.G. Application of ice to the synthesis of graphite oxide: a modified hummers method// Solid Fuel Chemistry, Volume 56, pp 347-352.

[28] Shao Z., Yang W., Cong Y., Dong H., Tong J., Xiong G. Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−x oxygen membrane // J. Membrane Sci. 2000. – V. 172. – P. 177-188.

[29] Enrique Juste, Aurélie Julian, G. Etchegoyen, Pierre-Marie Geffroy, Thierry Chartier, et al. Oxygen permeation, thermal and chemical expansion of (La,Sr)(Fe,Ga)O3– δ perovskite membranes. Journal of Membrane Science, 2008, 319, pp.185-191.

[30] Zeng Q., Zuo Y., Fan C., Chen C. CO2-tolerant oxygen separation membranes targeting CO2 capture application //J. Membr. Sci. 2009. V. 335. P. 140-144.

Yuklamalar

Nashr qilingan

2024-12-12

Nashr

Bo'lim

QUYOSH ENERGETIKASI

qanday qilib iqtibos keltirish mumkin

QUYOSH PECHINDA NIKEL FERRIT SINTEZI XUSUSIYATLARI. (2024). Muqobil Energetika, 1(12). https://aenergy.qmii.uz/index.php/ae/article/view/9