FEATURES OF NICKEL FERRITE SYNTHESIS IN A SOLAR FURNACE

Authors

  • Muhammad-Sultankhan Paizullakhanov Muhammad-Sultankhan Author
  • Raimkhuzhaevich Author
  • Zafarovich Author

Keywords:

spinels, melt synthesis, ferrites, cobalt, nickel, fuel cell, magnetic hysteresis, catalyst

Abstract

Abstract. Introduction. The synthesis method plays an important role in obtaining a material with a given particle size, structure, microstructure and specific surface area, and phase stability. These parameters together determine certain properties. The main synthesis methods are solid-phase reactions, thermal decomposition, hydrothermal and solvothermal methods, co-precipitation, sol-gel and microwave processing. However, each method has its own advantages and disadvantages, and there is no optimal way to obtain high-quality ferrite materials from spinel. Therefore, the study of the structure and properties of nickel ferrite NiFe0O4, synthesized from a melt of a mixture of Fe2O3 + NiO in a solar furnace

Methods and materials. The mixture was ground in an agate mortar with the addition of ethyl alcohol (10 wt.%) and molded into tablets with a diameter of 12 mm and a height of 15 mm. The tablets were placed on a melting table located on the focal spot of a circle shaped with a diameter of 30 mm of the solar furnace. The melt was cooled by pouring into water. Hardened castings were ground, molded, and sintered at 1100°C.

Results. A single-phase material representing a cubic modification of nickel ferrite NiFe2O4 with a lattice parameter of 8.87 Å was obtained. The freshly synthesized material exhibited a soft magnetic character with parameters Hc=60 Oe, Ms=30 emu/g. While the material fired at 1100°C showed increased parameters Hc=80 Oe, Ms=50 emu/g.

Conclusion. The material obtained by synthesis from a melt in a solar oven can be used in catalytic processes of hydrogen synthesis by reforming organic raw materials due to its structure and magnetic parameters.

Downloads

Download data is not yet available.

References

[1] Subramanian Yuvaraj, Ramakrishnan Kalai Selvan and Yun Sung Lee.An Overview of AB2O4- and A2BO4-Structured Negative Electrodes for Advanced Li-Ion Batteries// See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/291186670

[2] Alan Fernando Ney Boss, Antonio Carlos da Cunha Migliano Ingrid Wilke.Terahertz frequency electrical properties of nickel cobalt ferrites//Conference: 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz DOI: 10.1109/IRMMW-THz.2016.7758775)

[3] Atiq S., Majeed M., Ahmad A., Abbas S.K., Saleem M., Riaz S., Naseem S. Synthesis and investigation of structural, morphological, magnetic, dielectric and impedance spectroscopic characteristics of Ni-Zn ferrite nanoparticles. Ceram. Int. 2017. V.43. p.2486 –2494

[4] Balgude, S.D., Barkade, S.S. and Mardikar, S.P., 2020. Metal Oxides for High-Performance Hydrogen Generation by Water Splitting. In Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices, CRC Press, PP. 169-194.

[5] Pablo Korth Pereira Ferraz, Robert Schmidt, Delf Kober, Julia Kowal. 2018.A high frequency model for predicting the behavior of lithium-ion batteries connected to fast switching power electronics. Journal of Energy Storage,18: 40-49.

[6] Satish Meshram, Sagar Balgude, Imtiaz Mulla, Parag Adhyapak. 2015. Fabrication of WO3/PANI nanocomposites for ammonia gas sensing application. In 2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS), IEEE, pp. 196-199.

[7] Mallesh Kurakula, G. S. N. Koteswara Rao.2020. Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. European Polymer Journal, 136: 109919

[8] Durgadsimi, S., Kattimani, V., Maruti, N., Kulkarni, A., & Mathad, S. (2021). Синтез и структурный анализ феррита никеля, синтезированного методом со-осаждения. Eurasian Physical Technical Journal, 18(4(38), 14–19.

[9] Вызулин С.А., Каликинцева Д.А., Мирошниченко Е.Л., Бузько В.Ю., Горячко А.И.. Радиопоглощающие свойства никель-цинковых ферритов, синтезированных различными способами//Известия РАН. Серия физическая, 2018, том 82, No 8, с. 1045–1047

[10] Bouwmeester, H.J.M. and Burggraaf, A.J. (1997) Dense Ceramic Membranes for Oxygen Separator. In: Gellings, P.J. and Bouwmeester, H.J.M., Eds., The CRC Handbook of Solid State Electrochemistry, CRC Press, New York, 481-553.

[11] Mingchen Tang, Long Xu and Maohong Fan. Progress in oxygen carrier development of methane-based chemical-looping reforming: A review. Applied Energy, 2015, vol. 151, issue C, 143-156.

[12] Zeng Q., Zuo Y., Fan C., Chen C. CO2-tolerant oxygen separation membranes targeting CO2 capture application // J. Membr. Sci. – 2009. – V. 335. – P. 140-144.

[13] Gazda1a M., Jasinski P., Kusz B., Bochentyn B., Gdula-Kasica K., Lendze T. Lewandowska-Iwaniak W., Mielewczyk-Gryn A., Molin S. Perovskites in Solid Oxide Fuel Cells// Solid State Phenomena Vol. 183 (2012) pp 65-70

[14] Online available since 2011/Dec/22 at www.scientific.net © (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/SSP.183.65

[15] Felix N. Büchi, Mathias Reum Stefan A. Freunberger1 and Antonio Delfino On the Efficiency of Automotive H2/O2 PE Fuel Cell Systems//3rd European PEFC Forum, Session B09, Thursday, 7 July, 09:00h, File No. B091

[16] Qinghuan Pan, Liping Ma, Wang Du, Jie Yang, Ran Ao, Xia Yin, Sancheng Qi ng Hydrogen-enriched syngas production by lignite chemical looping gasification with composite oxygen carriers of phosphogypsum and steel slag//Energy. V.241, 2022

[17] Ismael M. Solar energy materials and solar cells ferrites as solar photocatalytic materials and their activities in solar energy conversion and environmental protection: A review, Sol. Energy Mater. Sol. Cells 219 (2021). https:// doi.org/10.1016/j.solmat.2020.110786.

[18] Miftahu Gambo Idris, Hafeez Yusuf Hafeez, Mohammed, Abdussalam Balarabe Suleiman, Chifu Ebenezer Ndikilar. A review on recent development in the spinel ferrites-based materials for efficient solar fuel (hydrogen) generation via photocatalytic water-splitting//Applied Surface Science Advances 18 (2023) 100468 https://doi.org/10.1016/j.apsadv.2023.100468

[19] Akbarov R.Y., Paizullakhanov M.S. Characteristic features of the energy modes of a Large Solar Furnace with a capacity of 1000 kW//Applied Solar Energy, 2018. V. 54.m P. 99-109

[20] Paizullakhanov M.S., Suvonova L.S. & Cherenda N.N. Synthesis of silicon carbide from natural raw material in a solar furnace//High Temperature Material Processes 28(1):19–25 (2024)

[21] Paizullakhanov, M.S., Shermatov, Zh.Z., Nodirmatov, E.Z., Rajamatov, O.T., Ernazarov, F.N., Sulaimanov, M.T.Nurmatov, Sh.,Cherenda, N.N. Synthesis of materials by the concentrated solar radiation.// High Temperature Material Processes 25(2):17–29 (2021)

[22] Payzullakhanov M.S., Payziyev S.D., Suleymanov S.K. Modeling of processes of heating and cooling of materials in a solar furnace//Applied Solar Energy, 2019. V.55.iss..5. P.404-408.

[23] Paizullakhanov, M.S., Karshieva, N.K., Ernazarov, F.N. et al. Studying the Possibility of Applying Barium-Strontium Cobaltite in Hydrogen Energy. Therm. Eng. 71, 280–284 (2024). https://doi.org/10.1134/S0040601524030054

[24] Шкловский Б.И., Эфрос А.Л. Современное состояние теории прыжковой электропроводности. УФН, 1983, т.141, вып.4, с.711-744

[25] Funke K. Jump relaxation model and coupling model-a comparison, J. Non-Cryst. Solids., 172 (1994) 1215-1221.

[26] Torres D., De Llobet S., Pinilla J.L., Lázaro M.J., Suelves I., Moliner R. Hydrogen production by catalytic decomposition of methane using a Fe-based catalyst in a fluidized bed reactor. J. Nat. Gas. Chem. 2012; 21:367–73.

[27]. Gudyma T.S, Lapekin N.I., Popov M.V., Bannov A.G. Application of ice to the synthesis of graphite oxide: a modified hummers method// Solid Fuel Chemistry, Volume 56, pp 347-352.

[28] Shao Z., Yang W., Cong Y., Dong H., Tong J., Xiong G. Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−x oxygen membrane // J. Membrane Sci. 2000. – V. 172. – P. 177-188.

[29] Enrique Juste, Aurélie Julian, G. Etchegoyen, Pierre-Marie Geffroy, Thierry Chartier, et al. Oxygen permeation, thermal and chemical expansion of (La,Sr)(Fe,Ga)O3– δ perovskite membranes. Journal of Membrane Science, 2008, 319, pp.185-191.

[30] Zeng Q., Zuo Y., Fan C., Chen C. CO2-tolerant oxygen separation membranes targeting CO2 capture application //J. Membr. Sci. 2009. V. 335. P. 140-144.

Downloads

Published

2024-12-12

How to Cite

FEATURES OF NICKEL FERRITE SYNTHESIS IN A SOLAR FURNACE. (2024). Alternative Energy, 1(12). https://aenergy.qmii.uz/index.php/ae/article/view/9