MATLAB/SIMULINK TIZIMIDA MIKRO GESNI KOMPYUTERDA MODELLASHTIRISH

Mualliflar

  • Uzakov Gulom Norboevich Muallif
  • Safarov Alisher Bekmurodovich Muallif
  • Kuziev Zafar Muallif

Kalit so‘zlar:

yo‘naltiruvchi qanot , ikki rotorli gidroturbina, qarama-qarshi yo‘nalishda aylanadigan ikki rotorli o‘qli oqim doimiy magnitli generator, modellashtirish, eksperiment, sof joriy qiymat (SJQ)

Abstrak

Annotatsiya. Kirish. Respublikamizda iqtisodiy tarmoqlarning rivojlanishi, aholi turmush darajasining o‘sishi va sonining ko‘payishi natijasida energiyaga bo‘lgan talab ortib bormoqda. Bu holat ijtimoiy va iqtisodiy sohaning rivojlanishiga, jumladan, mamlakatning qishloq xo‘jaligi sektorini elektr energiyasi bilan ta’minlash darajasiga katta ta’sir ko‘rsatmoqda. Ushbu ta’sirlarni bartaraf etishning asosiy yechimlaridan biri sifatida, qayta tiklanadigan energiya manbalari asosida ishlaydigan energiya qurilmalarini, xususan, kichik quvvatli gidroelektr stansiyalarini rivojlantirish va samaradorligini oshirish yetakchi o‘rinlardan birini egallaydi.

Usul va materiallar. Maqola qishloq xo‘jaligida ishlatiladigan nasos agregatlaridan chiqqan suv oqimlariga moslashtirilgan 3 kVt quvvatga ega ikki rotorli gidroenergiya qurilmasini Matlab/Simulink dasturiy paketidan foydalanib modellashtirilgan.

Natijalar. Nazariy va eksperimental tadqiqotlar natijasiga ko‘ra, yo‘naltiruvchi apparatning geometrik o‘lchamlari quyidagicha aniqlangan: tashqi diametri 1 m, ichki diametri 0,5 m, yo‘naltiruvchi pichoqlar soni 16, yo‘naltiruvchi qanotlarning o‘rnatish burchagi β= -17,50, pichoqlarning diametri 0,5 m, vtulka diametri 0,2 m, pichoqlar soni 6, pichoqlarning optimal o‘rnatish burchagi 202,50 va suv sarfining maksimal qiymati 0,24 m³/s. Mikro gidroelektr stansiyasining nominal quvvati 3 kVt ekanligi aniqlangan.

Xulosa. Qurilmaning texnik va iqtisodiy ko‘rsatkichlari tahliliga ko‘ra, ishlab chiqilgan 3 kVt quvvatga ega vertikal o‘qli mikro gidroelektr stansiyasining amaliy qo‘llanilishi natijasida bir yilda o‘rtacha 19500 kVt·soat elektr energiyasi ishlab chiqarish, 14,53 tonna shartli yoqilg‘i tejash va 28,5 tonnadan ortiq karbonat angidrid (CO2) chiqindilarining atmosferaga chiqishining oldini olish mumkin. Ushbu mikro-gidroelektr stansiyasining iqtisodiy samaradorligi “Sof joriy qiymat” (SJQ) usuli yordamida baholangan bo‘lib, unda sof joriy qiymat 5500 AQSh dollariga teng, statik qaytarish davri 1,56 yil va dinamik qaytarish davri 2,78 yilni tashkil qiladi.

Yuklashlar

Yuklab olish maʼlumotlari hali mavjud emas.

bibliografik havolalar

[1] 2023 World Hydropower Outlook. https://indd.adobe.com/view/92d02b04-975f-4556-9cfe-ce90cd2cb0dc, last accessed 2023/10/11

[2] Uzakov G.N., Kuziev Z.E., Safarov A.B., Mamedova R.A.: “Improvement research of a vertical axis micro hydro power plant”, International Journal of Advanced Research in Science, Engineering and Technology, Vol. 11, Issue 2, pp. 21438-21443 (2024)

[3] Safarov, A., Davlonov, H., Mamedov, R., Chariyeva, M., Kodirov, D.: “Design and modeling of dynamic modes of low speed electric generators for electric power generation from renewable energy sources”, AIP Conference Proceedings, 2686, 020013 (2022)

[4] Sadullaev, N.N., Safarov, A.B., Mamedov, R.A., Kodirov, D.: “Assessment of wind and hydropower potential of Bukhara region”. IOP Conference Series: Earth and Environmental Science, 614(1), 012036 (2020)

[5] Safarov, A.B., Mamedov, R.A.: “Study Of Effective Omni-directional Vertical Axis Wind Turbine For Low Speed Regions”, IIUM Engineering Journal, 22(2), pp.149–160, (2022)

[6] Uzakov G.: Mathematical modeling the heat balance of a solar pond device, BIO Web of Conferences, 71, 02023 (2023)

[7] Uzakov, G.N., Almardanov, X.A.: “Study of the Material Balance of a Heliopyrolysis Device with a Parabolic Solar Concentrator”. Appl. Sol. Energy 59, 739–746 (2023)

[8] Jawahar, C.P., Michael, P.A.: “A review on turbines for micro hydro power plant”, Renew. Sustain. Energy Rev. 72, pp. 882–887, (2017)

[9] Ardizzon, G., Cavazzini, G., Pavesi, G.: “A new generation of small hydro and pumped hydro power plants: Advances and future challenges”. Renew. Sustain. Energy Rev. pp.746–761, (2014). doi: 10.1016/j.rser.2013.12.043.

[10] Samora, I., Hasmatuchi, V., Münch-Alligne, C., et al.: “Experimental characterization of a five blade tubular propeller turbine for pipe inline installation”, Renew. Energy, 95, pp. 356–366, (2016)

[11] Uzakov G.N., Kuziev Z.E.: “Study of constructive dimensions of Kaplan hydro turbine in variable water flows”. Spectrum Journal of Innovation, Reforms and Development. Volume 20, pp. 36-42, (2023)

[12] Jawahar C.P., Michael P.A.: “A review on turbines for micro hydro power plant. Renewable Sustainable Energy Reviews”, Vol. 72, pp. 882–887. (2017)

[13] Chamil, A.: “Modelling and optimisation of a Kaplan turbine - A comprehensive theoretical and CFD study”. Cleaner energy systems, 3, 100017, (2022). doi.org/10.1016/j.cles.2022.100017

[14] Dariusz, B.: “Analytical Model of Small Hydropower Plant Working at Variable Speed”. IEEE Transactions on Energy Conversion 10, 1109, (2018) doi: 10.1109/tec.2018.2849573

[15] Choi J.Y., Lee S.H., Ko K.J., Jang S.M.: “Improved analytical model for electromagnetic analysis of axial flux machines with double-sided permanent magnet rotor and coreless stator windings”. IEEE Trans. On Magnetics. Vol. 47. No. 10. pp. 2760–2763. (2011)

[16] Kanuch J., Ferkova Z.: “Design and simulation of disk stepper motor with permanent magnets”. Archives of Electrical Engineering. Vol. 62(2). pp. 281-288. (2013)

[17] Zhu Z.Q., Howe D., Ekkehard B., Ackermann B.: “Instantaneous magnetic field distribution in brushless permanent magnet motors. part I: Open-circuit field”. IEEE Trans. Magn. Vol. 29. pp. 124–134. (1993)

[18 Węgiel T.: “Space harmonic interactions in axial flux permanent magnet generator”. Technical Transactions, Electrical Engeenering 2-E/2016. pp.65-79. (2016)

[19] Pop A.A., Jurca F., Oprea C., Chirca M., Breban S., Radulescu M.M.: “Axial-flux vs. radial-flux permanent-magnet synchronous generators for micro-wind turbine application. In Proceedings of the European Conference on Power Electronics and Applications”. Lille. France. 2–6 September 2013. pp. 1–10. (2013)

[20] Daghigh A., Javadi H., Torkaman H.: “Design optimization of Direct Coupled ironless axial FLUX permanent magnet synchronous wind generator with low cost and high annual energy yield”. IEEE Trans. Magn. Vol. 52, pp. 1–11. (2016)

[21] Rostami N., Feyzi M.R., Pyrhonen J., Parviainen A., Behjat V.: “Genetic algorithm approach for improved design of a variable speed Axial-Flux Permanent-Magnet synchronous generator”. IEEE Trans. Magn. Vol. 48. pp. 4860–4865. (2012)

[22] Mahmoudi A., Kahourzade S., Rahim N.A., Hew W.P.: “Design, analysis, and prototyping of an Axial-Flux permanent magnet motor based on genetic algorithm and Finite-Element analysis”. IEEE Trans. Magn. Vol. 49. pp. 1479–1492. (2013)

[23] Chernyahovskaya Yu.V.: “Evolution of methodological approaches to the fall of the cost of electrical engineering. Analysis of foreign experience”. Herald of IHEU. Vol. 4. pp. 56–68. (2016)

Yuklamalar

Nashr qilingan

2024-12-12

qanday qilib iqtibos keltirish mumkin

MATLAB/SIMULINK TIZIMIDA MIKRO GESNI KOMPYUTERDA MODELLASHTIRISH. (2024). Muqobil Energetika, 3(14). https://aenergy.qmii.uz/index.php/ae/article/view/17