GELIOPIROLIZ QURILMASIDA MUQOBIL YOQILG‘ILAR OLISHNING ISSIQLIK-TEXNIK REJIMINI TADQIQ QILISH
Kalit so‘zlar:
quyosh energiyasi , parabolik konsentrator, biomassa pirolizi, muqobil yoqilg‘i, quyosh geliopiroliz qurilmasi, biomassa energiyasi, piroliz reaktori, , issiqlik energiyasiAbstrak
Annotatsiya. Kirish. Maqolada parabolik quyosh konsentratorli geliopiroliz qurilmasidaa kungaboqar o‘simligi chiqindilarini pirolizi jarayonini issiqlik-texnologik rejimi tadqiqoti natijalari keltirilgan. Geliopiroliz jarayonini tadqiqot qilish uchun tajriba parabolik quyosh kotsentratorli geliopiroliz qurilmasi yaratilgan. Kungaboqar o‘simligi chiqindisini termik qayta ishlash jarayonida chiquvchi mahsulotlarni haroratga bog‘liqligi va material balansi tajribalarda o‘rganilgan. Qurilmada o‘tkazilgan tajribalarda geliopiroliz reaktoriga yuklangan 1 kg kungaboqar o‘simligi chiqindisi pirolizi natijasida 63 % bioko‘mir, 10 % suyuq va 27 % gazsimon yoqilg‘ilar olishga erishilgan.
Usul va materiallar. Parabolik quyosh konsentratorli geliopiroliz qurilmasi reaktoriga yuklangan biomassadan ajralib chiqqan bioyoqilg‘ilarning material balansi laboratoriya sharoitida boshlang‘ich namligi 10 % va o‘lchami 6÷8 mm bo‘lgan holatda amalga oshirildi. Tadqiqotlar kungaboqar o‘simligi chiqindisida amalga oshirilgan.
Natijalar. Olib borilgan tajribalarga ko‘ra piroliz mahsulotlarining umumiy chiqish miqdori 350-400 oC harorat intervalida o‘zgarishiga kam bog‘liq bo‘lishi aniqlandi. Shunday qilib, tajribada yuklangan 1 kg kungaboqar o‘simligi chiqindisi pirolizi natijasida 63 % bioko‘mir, 10 % suyuq va 27 % gazsimon yoqilg‘ilar olishga erishildi.
Xulosa. Ishlab chiqilgan parabolik kuyosh konsentratorli geliopiroliz qurilmasi kunduzgi rejimda siklni amalga oshirish uchun xususiy ehtiyojiga sarflanadigan energiyani quyosh issiqligidan qoplash imkonini beradi. Parabolik quyosh konsentratorili geliopiroliz qurilmasida olib borilgan eksperimental tadqiqotlar natijasida kungaboqar o‘simligi chiqindisi pirolizidan qattiq, suyuq va gazsimon yoqilg‘i namunalari olish mumkinligi aniqlandi.
Yuklashlar
bibliografik havolalar
[1] Avezov, R.R., Vokhidov, A.U., Kuralov, M.A. Principles of development of solar energy in the Republic of Uzbekistan, Modern problems of renewable energy, A collection of materials of the respublican scientific-practical conference, Karshi, March, 18, 11-13 (2018)
[2] Abdurakhmanov, A., Kuchkarov, A.A., Holov, Sh.R., Abdumuminov, A. “Calculation of optical-geometrical characteristics of parabolic-cylindrical mirror concentrating systems”, European science review. 2017. Vol. 2. P. 201-204.
[3] Klychev, Sh.I., Zakhidov, R.A., Bakhramov, S.A., Dudko, Yu.A., Khudoikulov, A.Ya., Klychev, Z.Sh., Khudoiberdiev, I.A. “Parameter optimization for paraboloid-cylinder-receiver system of thermal power plants”, Applied Solar Energy. Applied Solar Energy. 2009. Vol. 45. No. 4. pp. 281–284.
[4] Avezov, R.R., Avezova, N.R., Matchanov, N.A., Suleimanov, Sh.I., Abdukadirova, R.D. “History and State of Solar Engineering in Uzbekistan”, Applied Solar Energy, 2012, Vol. 48, No. 1, pp. 14–19.
[5] Amal, E.K., Oumaima, E.A., Elhassan, A. CFD Simulation of Temperature Distribution in a Parabolic Trough Collector. Appl. Sol. Energy 59, 311–323 (2023).
[6] Koishiyev, T.K., Bekzhan, Z.B., Saribayev, A.S. Optimization Issues, Computer Modeling, and Visualization of the Efficiency Coefficient of Optical Systems of Solar Furnaces and Solar Power Plants. Appl. Sol. Energy 59, 324–328 (2023).
[7] Abdurakhmanov, A.A. Akhadov, Zh.Z. Concentrating systems and determination of optimal parameters of the light-receiving surface, Appl. Sol. Energy, 2004, vol. 40, no. 3, p 39
[8] Akhadov, J.Z. Study of the Performance Characteristics of a Solar Concentrator for Production of Thermal Energy. Appl. Sol. Energy 59, 169–175 (2023).
[9] Li, R., Zeng, K., Soria, J.E., Mazza, G.A., Gauthier, Rodriguez, D.R., Flamant, G. Product distribution from solar pyrolysis of agricultural and forestry biomass residues. Renew. Energy 89, 27–35.
[10] Luzzi, A., Lovegrove. K. Solar Thermal Power Generation, Australian National University, Camberra, 2004, pp. 669–683.
[11] Nzihou, A., Flamant, G., Stanmore, B. Synthetic fuels from biomass using concentrated solar energy - a review. Energy 2012 (42), 121–131.
[12] Uzoqov G‘.N., Almardanov H.A. Biomassa geliopirolizi jarayonida suyuq mahsulotlarni chiqish miqdoriga ta’sir etuvchi parametrlarni baholash. // Fan va texnologiyalar. – 2023. – №6(58). – 45–53 b.
[13] Uzakov, G.N., Almardanov, X.A. Study of the Material Balance of a Heliopyrolysis Device with a Parabolic Solar Concentrator. Appl. Sol. Energy 59, 739–746 (2023).
[14] Uzakov G.N., Novik A.V., Davlonov X.A., Almardanov X.A., Chuliev S.E. Heat and Material Balance of Heliopyrolysis Device. Energetika. Proceedings of CIS higher education institutions and power engineering associations. 2023; 66(1):57-65.
[15] Uzakov, G.N., Almardanov, X.A., Kodirov, I.N., Aliyarova, L.A. Studying the temperature regime of the heliopyrolysis device reactor. E3S Web of Conferences, 2023, 411, 01040.
[16] Davlonov X., Study on heat and material balance of heliopyrolysis device, AIP Conference Proceedings, 2686, 020023 (2022)
[17] Almardanov, H. and Chuliyev, S. 2022. Biomassadan geliopiroliz usulida yoqilg‘i olish tajriba qurilmasining parametrlarini asoslash. Innovatsion texnologiyalar. 1, 4 (Nov. 2022), 92–96.
[18] G.N. Uzakov, X.A. Almardanov, I.N. Kodirov, L.A. Aliyarova. Modeling the heat balance of a solar concentrator heliopyrolysis device reactor. BIO Web Conf., 71 (2023) 01098.