BIOMASSA PIROLIZ JARAYONINING KINETIKASINI TADQIQ QILISH (KUNGABOQAR CHIQINDILARI MISOLIDA)
Kalit so‘zlar:
piroliz kinetikasi, biomassa pirolizi, kungaboqar chiqindilari, Comsol multiphysics, degradatsiya,, Kissinger usuliAbstrak
Annotatsiya. Kirish. Ushbu maqola Comsol multiphysics dasturiy ta’minotiga asoslangan kungaboqar chiqindilari bo‘laklari biomassasining piroliz jarayonining kinetikasini o‘rganib chiqildi, bu biomassani parchalanishi jarayonida sodir bo‘ladigan kimyoviy reaktsiyalar tezligini aniqlash va piroliz tezligi va samaradorligiga ta’sir qiluvchi asosiy omillarni aniqlash imkonini beradi. Olingan modellar harorat o‘zgarishi tendentsiyalarini juda yaxshi tavsiflaydi. Kungaboqar chiqindi bo‘laklari biomassasining piroliz jarayoni 440-717 K harorat oralig‘ida sodir bo‘lgan. 440 K haroratda biomassa massasini yo‘qotishni boshladi, massa yo‘qolishi esa 717 K haroratda to‘xtadi. Kinetik parametrlar Kissenjer usuli bilan hisoblab chiqilgan. Kinetik va doimiy parametrlarni hisoblash uchun eng kichik kvadratlar usuli va korrelyatsion tahlil ishlatilgan. Natijalar kelajakda biomassa piroliz jarayonining jarayoni va sharoitlarini optimallashtirish uchun foydali bo‘ladi.
Usullar va materiallar. Tahlil qilish uchun ushbu tadqiqotda kungaboqar chiqindilarining biomassasi ishlatilgan, chunki bu biomassa yuqori issiqlik qobiliyatiga va yuqori bioneft rentabelligiga ega. Bo‘laklar hajmi 0,02 m2 ni tashkil etdi, kungaboqarning termofizik xususiyatlari ishlatildi. Tahlil Comsol Multiphysics dasturi yordamida amalga oshirildi.
Natijalar. Comsol Multiphysics asosida kungaboqar chiqindilari biomassasining piroliz jarayonini modellashtirishda harorat o‘zgarishini o‘lchash uchun biomassa yuzasida va biomassa markazida harorat datchiklari o‘rnatildi. Vaqtga qarab harorat o‘zgarishi ma’lumotlari olindi. Olingan modellar harorat tendentsiyalarini, ayniqsa biomassa markazidagi haroratni juda yaxshi tavsiflaydi.
Xulosa. Kinetik parametrlar Kissinger usuli bilan hisoblab chiqilgan. Kinetik va doimiy parametrlarni hisoblash uchun eng kichik kvadratlar usuli va korrelyatsion tahlil ishlatilgan. Natijalar kelajakda biomassa piroliz jarayoni sharoitlarini optimallashtirish uchun foydali bo'ladi. Kissinger usulida kinetik parametrlar butun piroliz jarayoni uchun bir xil edi. Modeldagi harorat va isitish tezligi o‘rtasidagi korrelyatsiya koeffitsiyenti 0,86 ga teng.
Yuklashlar
bibliografik havolalar
[1] Jaroenkhasemmeesuk C., Tippayawong N., Thermal degradation kinetics of sawdust at intermediate heating rates, Appl. Therm. Eng., 103 (2016), pp. 170-176.
[2] Uzakov G., Mamatkulova S., Ergashev, S.: Thermal mode of the condenser of a pyrolysis bioenergy plant with recuperation of secondary thermal energy. E3S Web of Conferences, 411, 01021, (2023).
[3] Haykiri-Acma, H.,Yaman, S. and Kucukbayrak, S., “Effect of heating rate on the pyrolysis yields of rapeseed”, Renewable Energy, Vol. 31, (2006), 803-810. http://dx.doi.org/10.1016/j.renene.2005.03.013
[4] Islam, M.A., Auta, M., Kabir, G. and Hameed, B.H., “A thermogravimetric analysis of the combustion kinetics of karanja (Pongamiapinnata) fruit hulls char”, Bioresource Technology, Vol. 200, (2016), 335-341. (http://dx.doi.org/10.1016/j.biortech.2015.09.057).
[5] Uzakov G., Mamatkulova S., Ergashev Sh. and el. Modeling of heat exchange processes in a condenser of a pyrolysis bioenergy plant. BIO Web Conf., 71 02021. DOI: https://doi.org/10.1051/bioconf/20237102021, (2023).
[6] Mishra, G., Kumar, J. and Bhaskar, T., “Kinetic studies on the pyrolysis of pinewood”, Bioresource Technology, Vol. 182, (2015), 282-288. (http://dx.doi.org/10.1016/j.biortech.2015.01.087).
[7] Mamatkulova S. G. and Uzakov G. N.: Modeling and calculation of the thermal balance of a pyrolysis plant for the production of alternative fuels from biomass. IOP Conference Series: Earth and Environmental Science Т 1070 1, (2022).
[8] Damartzis, Th., Vamvuka, D., Sfakiotakis, S. and Zabaniotou, A., “Thermal degradation studies and kinetic modeling of cardoon (Cynaracardunculus) pyrolysis using thermogravimetric analysis (TGA)”, Bioresource Technology, Vol. 102, (2011), 6230-6238. http://dx.doi.org/10.1016/j.biortech.2011.02.060
[9] Zhai, M., Li, G., Zhang, Y., Dong, P., Qi, G. and Huang, Y., “Kinetic parameters of biomass pyrolysis by TGA”, Bio Resources, Vol. 4, (2016), 8548-8557. (http://dx.doi.org/10.15376/biores.11.4.8548-8557).
[10] Kaczor Z., Buliński Z., Werle S.: Modelling approaches to waste biomass pyrolysis: a review, Renewable Energy, 2020, Volume 159, Pages 427-443, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2020.05.110.
[11] Mamatkulova S. Comsol multiphysics yordamida oʻsimlik biomassasining piroliz jarayonini modellashtirish. Innovatsion texnologiyalar 3(52), 2023.
[12] Singh S, Sawarkar AN. Thermal decomposition aspects and kinetics of pyrolysis of garlic stalk. Energy Sources, Part A:Recovery. Utilization, and Environmental Effects 2020. https://doi.org/10.1080/15567036.2020.1716891
[13] Singh P, Singh R.K., Gokul P.V., Hasan S.H., Sawarkar A.N. Thermal degradation and pyrolysis kinetics of two Indian rice husk varieties using thermogravimetric analysis. Energy Sources, Part A: recovery, Utilization, and Environmental Effects; 2020.
https://doi.org/10.1080/15567036.2020.1736215
[14] Heydari, M., Rahman, M. and Gupta, R., “Kinetic study and thermal decomposition behavior of lignite coal”, International Journal of Chemical Engineering, Vol. 2015, (2015), 1-9. (http://dx.doi.org/10.1155/2015/481739).