HYDROGEN STORAGE IN POROUS ABSORBERS
Keywords:
: hydrogen, production, storage, hydrides, absorbers, porous ceramicsAbstract
Abstract. Introduction. The main criterion for determining the effectiveness of materials for hydrogen absorbers is the approach that materials for storing hydrogen must satisfy a number of simple properties - retain it in large quantities at room temperature, quickly release it at not too high temperatures, and not collapse. However, a material that fully meets the needs has not yet been developed. The search for new materials and various proposed solutions to the problem have been highlighted in a number of recent review articles. Therefore, the development of a hydrogen absorber based on an inexpensive porous material of a zeolite composition is relevant.
Methods and materials. There are various ways to solve this problem, one of the most important of which is the use of the burn-out additive method and polyvinyl chlorine (PVC). The use of PVC is the most economical and affordable method for producing porous ceramics of a given composition. The studies used organic additives - rice husk and PVC.
Results. The obtained materials of aluminosilicate composition with a specific surface area of 2500 cm2/g can be used as hydrogen absorbers with an aspect number from 3 wt.% to 13 wt.% in the temperature range of 100°C to 190°C.
Conclusion. The created absorber based on porous ceramics of a zeolite composition is highly efficient.
Downloads
References
[1] Бродач М.М., Шилкин Н. В. Использование топливных элементов для энергоснабжения зданий» “АВОК” за №3'2004
[2] Kozlov S.I., Fateyev V.N. Hydrogen energy: current state, problems, prospects. Moscow: Gazprom BNIIGAZ, 2009, 518 р.
[3] Kulova T.L., Nikolayev I.I., Fateyev V.N., Aliyev A.Sh. Modern Electrochemical Systems of Energy Accumulation. Kimya Problemleri - Chemical problems. 2018, vol.16, no. 1, pp. 9-34.
[4] Tzimas E., Filiou C., Peteves S. D., Veyret J. –B., Hydrogen storage: state-of-the-art and future perspective 2003: EUR 20995 EN, European Commission, The Netherlands, ISBN 92-894-6950-1 (2003)
[5] Гладышева М.А. Доклад «Хранение водорода» / М.А.Гладышева [Электронный ресурс] // Конференция «Старт в науку» МФТИ, 2004. Режим доступа: http://mirznanii.com/a/188820/khranenie-vodoroda
[6] Фатеев В.Н., Алексеева Ю.К., Коробцев С.В., Серегина Е.А., Фатеева Т.В., Григорьева А.С., Алиев А.Ш. Проблемы аккумулирования и хранения водорода //chemical problems 2018 no. 4 (16)
[7] Sanusi Kazeem Olajide, Sobowale Adeniyi Ademol, Oloyede Oloruntoba Oladapo, Ogundola Abayomi Cyril , Fadipe Abimbola Omoyemi, Aiyeola Sikiru Yommy, Adedoyin Kayode James.
Hydrogen Storage Materials: A Review// International Journal of Scientific & Engineering Research Volume 11, Issue 9, September-2020 29-5518
[8] Anshul Gupta, Gino V. Baron, Patrice Perreault, Silvia Lenaert, Radu George Ciocarlan,
Maarten Houlleberghs, Eric Breynaert, Johan Martens, Clathrates: Next Generation Hydrogen Storage Materials// Energy Storage Materials. Volume 41, Pages 69-107
[9] Факиоглу Э., Юрум И., Везироглу Т.Н. Обзор систем хранения водорода на основе бора и бористых соединений. Альтернативная энергетика и экология (ISJAEE). 2018;(7-9):86-94. https://doi.org/10.15518/isjaee.2018.07-09.086-094.
[10] Eberle U., Arnold G., von Helmholt R., Hydrogen storage in metal-hydrogen systems and their derivatives, Journal of Power Sources 154 (2006) 456-460
[11] Sandrock G., A panoramic overview of hydrogen storage alloys from a gas reaction point of view, Journal of Alloys and Compounds 293-295 (1999) 877-888
[12] Schlapbach L., Züttel A., Hydrogen-storage materials for mobile applications, Nature 414 (2001) 353-358
[13] Grochala W., Edwards P. P., Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen, Chemical Reviews 104(3) (2004) 1283-1315
[14] Schüth F., Bogdanović B., Felderhoff M., "Light metal hydrides and complex hydrides for hydrogen storage" Chemical Communications 20 (2019) 2249-2258
[15] Sakintuna B., Lamari-Darkrim F., Hirscher M., Metal hydride materials for solid hydrogen storage: A review, International Journal of Hydrogen Energy 32 (2020) 1121-1140
[16] Sheetal Kumar dewangan, Man Mohan, Vinod Kumar, Byungmin Ahn. A comprehensive review of the prospects for future hydrogen storage in materials‐application and outstanding issues// International Journal of Energy Research 46(260) 2022, p.123-128
[17] Zhijie Chen, Kent O.Kirlikovali, Karam B. Idrees,Megan C.Wasson, and Omar K.Farha Porous materials for hydrogen storage// Chem8,693–716,March10,2022